
Audio Process Design & Implementation
Practical 10 – Introducing MySynth

1 Introduction

This semester’s practicals will investigate the nature of synthesis and control through the
development of professional audio plugins, using the MySynth code template, incorporating
the Synthesizer Toolkit (STK), a C++ code library for DSP, developed by Stanford’s Center
for Computer Research in Music & Acoustics (CCRMA).1 Your understanding of practical
synthesis techniques will be assessed as part of the second assignment, as well as the exam.

The STK code library is a collection of ready-made C++ objects that you can include in your
own projects, providing you with a basic collection of DSP building blocks (filters, signal
generators, basic effects, etc.), which has been extended with additional objects and features
specifically for the APDI module, and which you can combine together to make synthesisers
based on practically any type of synthesis. Objects in the code library broadly correspond
with the different types of nodes of flow diagrams presented in the lectures and course notes.
Similarly, you can also think of each code object as fulfilling roles similar to the basic
synthesis objects used to construct a Max patch. Compared to Max:

• Instead of creating and linking components visually, you will insert and link objects
using C/C++ code, drawing and developing on the programming techniques learnt in
the first semester (and also the first year).

• While prototyping synthesisers is a little more cumbersome than Max, plugins written
in C/C++ code typically perform better, and can be run inside most music programs,
such as Logic, SoundTrack, Cubase, AU Lab, etc. This not only makes it easier to use
your synthesisers and effects in your own music, but makes them easier to distribute
(or sell) for use by others – though please read the note overleaf, concerning
commercial development and use or distribution of STK, JUCE, AU and UWE code.

• While Max is popular with artists and sound installations, the C/C++ concepts and
techniques taught on this module more closely reflect industry-standard practices
within professional audio and music software development.

This first practical introduces you to the new MySynth Xcode/Visual Studio template project
and the technologies it is built on, including STK and JUCE.2 You will then extend the basic
synthesiser demo, based on a single sine wave signal generator, by using additive synthesis to
create saw and square wave signal generators, combining multiple sine wave generators to
build up the complex tone of these waves. To do this, you will be introduced to several
concepts surrounding classes and basic concepts of object-oriented programming (OOP),
which allow you to bundle up each complex tone’s multiple sine wave generators into a single
code object, which can then be used to replace the demo’s original “sine” object.

1 Synthesiser Toolkit (STK) / CCRMA - https://ccrma.stanford.edu/software/stk/
2 Jules’ Utility Class Extensions (JUCE) / Raw Material Software - http://www.juce.com

1.1 Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is based on packaging up all the related variables,
constants, functions, and processes relating to a single object in your synthesizer into a single
object in your code, called a class. You can then use (and re-use) that object in your code
without worrying about the low-level details of how it works internally. For example, when
we think about synthesizers, it’s easier to think in terms of “filter”, “oscillator”, or
“modulator”, rather than the multitude of individual transistors and resistors or individual
lines of DSP code they’re made of. The class becomes a new data type (like integers or floats,
but more ‘complex’) that you can create and place in your processing code, much like any
other variable. For example, once you’ve written a filter class, you can create as many
instances of that filter as you like – e.g. using an array of filter objects to create a filter bank.

This process of grouping related items is called abstraction, because it hides away the low-
level details within a higher-level container and helps you see the bigger picture more clearly.
Within a program, there can be many levels of abstraction, created to make the code easier to
understand and maintain. For example, you might create a class to represent a filter bank,
which would itself contain multiple filter objects. Indeed, some of STK’s more complex
objects themselves include other STK objects as sub-components.

1.2 The MySynth Xcode / Visual Studio Project

Replacing last semester’s template projects for developing AU/VST effect plugins (MyEffect),
a new template, called MySynth, is provided for developing synthesiser plugins, which you
will be able to load as software (or “virtual”) instruments in compatible plugin hosts (Logic,
Cubase, REAPER, Premiere Pro, etc.).

MySynth works as a mini-plugin, in the same a way as MyEffect – that is, it connects to a host
AudioUnit or VST plugin, called Synth Plugin (.component or .dll file), which handles the
low-level details of midi input and audio output, talks to the plugin host (DAW), and provides
tools for crafting UIs or handling input. Like MyEffect, a configurable UI has been provided
for you, enabling you to focus on synthesis (audio processing) and control (handling MIDI).

This architecture allows your code to be written in a pure C++, without any OS- or API- (or
even JUCE-) specific code, in a single, unified format, in a format suitable for the underlying
host system, allowing you to write plugin code that can be run on multiple platforms without
a re-writing. Hence, while MySynth runs as an AU synth plugin on Mac and a VSTi plugin on
windows, it is possible to adapt the code for any plugin format or OS (e.g. RTAS, iOS, etc.).

A Note on Commercial or Open-Source Development using MyEffect/MySynth
When using other people’s code (libraries, templates, wrappers, etc.), you must always
check the license to find out what it can be legally used for. Depending on the license, you
may have to pay a fee to use the software commercially, or may be obliged to open source
it (make your source code available publically) before distributing it, sometimes even when
giving it away. For example, JUCE can be used for free if you share your code (make it
open source), but commercial uses (without open-sourcing) incur a license fee.

You are free to share, distribute and sell your MyEffect/MySynth plugin binaries without
restriction, and show the code privately to prospective employers, but please email Chris
Nash (chris.nash@uwe.ac.uk) if you wish to distribute the code publicly.

2 Getting Started
NB: The following instructions (and workarounds) are similar to those for the previous MyEffect project.

1. From Blackboard, download the MySynth project template (under “Learning Materials”).
Copy the MySynth.zip file to a local folder and double-click it to expand its contents.

Note: Always be sure to copy work to safe, permanent storage - your APDI folder plus an
external drive and/or cloud-based storage (e.g. OneDrive). See Practical 3 for tips.

The resulting folder contains two sub-folders:

• Build – containing the executable binaries (including Synth Plugin, Plugin Host, and
your compiled MySynth mini-plugin), plus any temporary build files.

• MySynth – containing all the source code, resource files, and code projects. This folder
contains all your work, and is the one you need to back up or submit for assignments.

2. In the MySynth folder, open the appropriate project file MySynth.xcodeproj (Mac/Xcode) or
MySynth.vcxproj (Windows/Visual Studio), by double clicking it.

• The project consists of five main code files:
SynthPlugin.cpp/h, SynthPlugin.cpp/h and SynthExtra.h.

• To test our plugin, a dedicated program called “Plugin Host” is provided. The program
should install and run automatically when you build and run your code. It should also
handle configuration and installation of the Synth Plugin and your MySynth mini-plugin.

3. Build and run the project (R in Xcode; F5 in Visual Studio). After a short delay, you should see
your plugin appear, running in Plugin Host. Click a piano key to check the audio is working.

4. If your plugin does not appear, try the following troubleshooting steps:

• After compiling, check in the Build folder to make sure the MySynth.bundle (Mac) or
MySynth.dll (Windows) files have been produced. This is the mini-plugin that links
with the Synth Plugin.component (AU) or Synth Plugin.dll (VST) plugins.

• Running the project installs / launches the Plugin Host, which in turn automatically
installs and/or runs your plugin. On Windows, everything runs from the Build folder. On
Mac, plugins need to be installed to the system folder, which should happen automatically
when you first run your code, but you might see errors (see inset, below).

• Otherwise, check the Discussion Board on Blackboard and/or report any problems
(always including details of your system and any error messages) to the module leader.

5. The plugin UI includes a virtual piano keyboard, which can be controlled by clicking keys with
the mouse or using the computer keyboard. The middle row of keys are the white notes, with
black notes above:

 [W] [E] [T] [Y] [U] [O] [P]
 [A] [S] [D] [F] [G] [H] [J] [K] [L] [;]

The plugin should also respond to input from attached MIDI controllers. If available, check that
the controller’s keys also trigger note playback.

Mac only: The tools for Xcode development are distributed using a disk image (dmg) file. Double click this file
to “insert” the disk, and the follow the instructions inside it. After copying Plugin Host.app to your Applications
folder, run the app from that folder by right-clicking it and selecting “Open” – not by double-clicking it. This
will give you the option to proceed through the security warning, and will also authorise the Synth Plugin that
gets installs. There will be a short pause as it installs the plugin and you may need to re-run the app.
 To check the install in Finder, press Shift- G and enter: ~/Library/Audio/Plug-Ins/Components (note the ~
tilde). Verify that MySynth.bundle and Synth Plugin.component are both present. If they are, you might need
to either rebuild or re-run the project, or even restart the computer to refresh your audio plugin cache.

2.2 How MySynth Works

In the code project, a lot of the internal workings and functionality (e.g. note management) are
handled automatically, so that you need typically only focus on five main source code files to
develop your synthesiser:

• SynthNote.cpp/h – contains the implementation code for generating sound for each
individual note (MyNote) and handling related MIDI input.

• SynthPlugin.cpp/h – respectively define / declares the code for the wider
synthesiser / plugin (MySynth), including UI event handlers and any additional audio
processing applied to the synthesiser’s entire output (e.g. global effects).

• SynthExtra.h – provides a space for you to develop your own functions and objects
to use anywhere in your plugin (i.e. in MyNote or MySynth).

Within these files, your plugin is divided into two main types of component – a Synth class
(MySynth), used to represent the synthesiser as a whole, and a Note class (MyNote), used to
represent individual notes:

The MySynth Object (SynthPlugin.cpp/h)

This object represents the synthesiser as a whole, containing and managing a set (array) of
multiple note objects (as member objects) to support polyphonic playback. When it receives
MIDI input, it automatically assigns a new note object and updates the array, disconnecting it
when the note is no longer needed. Whenever the plugin host (e.g. Logic, Cubase) asks the
plugin for audio data, MySynth individually requests the audio from each active note, and
mixes them together. The summed audio can then be further processed to add additional,
global effects (EQ, reverb, etc.) before being returned to the host and played aloud. In this
sense, MySynth is very much like MyEffect, using MyNotes to generate audio input.

In SynthPlugin.cpp, these processes are largely handled by the following functions, editing
and extending the bodies of which will be the focus of later practicals and the assignment:

• MySynth::MySynth() – the constructor: called once, when the synthesiser is first
created. Used to setup the initial configuration of the synth (initialising variables, etc.).

• MySynth::postProcess() – called after individual notes have been synthesised and
mixed, providing an opportunity to apply global effects to the final output. As an
effect, you should notice a similarity to MyEffect’s process() function from previous
practicals – and your previous effect code will work with only a few name edits. By
default, the provided code simply passes the data through without changing it.

The MyNote Object (SynthNote.cpp/h)

Most synthesis efforts will focus on generating an individual note’s audio. Each MyNote
object provides the sound for a single note, based on the corresponding MIDI input, which is
passed on from the synthesiser. It can be thought of separately, as a monophonic synthesiser,
without worrying about other notes or how they are managed. It receives relevant MIDI Note
On/Off messages as well as MIDI Control Change messages, which are processed to
determine how the sound of the note starts/ends and evolves over time. Then, whenever the
synthesiser asks for the audio data, MyNote will generate the next block of audio for its note.

• MyNote::onStartNote() – called when the note is first triggered (e.g. in response to
a MIDI Note On message). Used to set the initial configuration of the note and
initialise the note’s member variables and objects (e.g. DSP components), based on
the requested pitch and velocity, which are passed as arguments to the function.

• MyNote::onStopNote() – called when the synthesiser requests the note to end (e.g. in
response to a MIDI Note Off message from the user), and used to manage the end of a
note. By default, this function returns true, telling the synthesiser that it should
terminate (and delete) the note immediately. However, it is often desirable to release
the note more gracefully – for example, have the note slowly fade away, after its key
is released, rather than abruptly cut to silence. In such cases, this function is used to
reconfigure the note’s variables or objects to execute the release, and then returns
false, to tell the synthesiser not to terminate the note just yet. It is then up to the note
object to signal the actual note end, using the process() function (see below).

• MyNote::process() – called regularly to process a block of audio for an individual
note, used to synthesise and process the note’s audio data. This function will be the
focus of much of your programming, directly determining the fundamental sound of
your synthesiser. As with other process functions (such as MyEffect::process(), as
well as MySynth::postProcess()), this function processes audio data in blocks (or
buffers). However, the data provided to the function (**outputBuffer) contains no
input audio (silence), and only acts as a receptacle for the audio data you generate.
Thus, the code structure, while largely similar to before, writes directly to the output
buffer without having to read an input. Note, however, the return value, which is used
to signal to the synthesiser whether the note should continue (true), or whether it can
be deleted (false). Situations where you might want to prematurely terminate a note
(without waiting for a Note Off) include one-shot sounds that don’t recycle or repeat
(e.g. drum hits). See also onStopNote() (above), for other scenarios where you need
to manually control the termination of a note.

2.3 A Simple Synthesiser

By default, the MySynth code project is configured to provide a very simple synthesiser, based
on a single sine wave generator. The sine wave is generated using a DSP component, called
Sine, provided by the STK code library. The library provides many basic DSP components,
including other types of signal generators, as well as filters, basic synthesis models, and
effects processors, which we will discover, combine and extend during these practicals.
However, all these DSP and code objects are designed to be used in a manner similar to Sine,
which the template project demonstrates the use of:

• In SynthNote.h, a Sine object, named signalGenerator, is added to the synthesiser
by declaring it as a member variable of MyNote. The sine wave generator’s own
implementation (within the STK library), defines and handles much of its own init-
ialisation and setup automatically, without you needing to manually initialise it. Note,
however, how it is added to the note object rather than the synthesiser object, as each
individual note requires its own sine wave generator (at its own frequency).

• When a note is triggered, the MyNote::onStartNote() function is used to handle the
pitch and velocity requested by the original MIDI Note On message. The pitch is
converted to a fundamental frequency using a mathematical expression, which the
Sine object is then set to use via its setFrequency() member function. Other DSP

objects will have similar member functions to configure their use, depending on their
audio processing role. Note how both fFrequency and fLevel are stored as shared
class variables so that they can be used (and changed) later – in the latter case to scale
the amplitude of our output to control the volume of the sine wave.

• Finally, in the MyNote::process() function, we simply call the Sine object’s tick()
function for each sample (i.e. within the while loop), to get successive values of the
sine wave, which are scaled by fLevel and placed in the output buffer.

Note how, compared to previous practicals, all the calculations for managing the phase
position and calling the sin() function are hidden (in the STK source files), making the code
easier to read and allowing you to focus on synthesis design. This demonstrates one of the key
advantages of object-oriented programming, allowing you to abstract away complexity.

Before continuing, have a play with the synthesiser using either keyboard, and observe the
various real-time analysis plots in the plugin’s UI, which includes a waveform display (time
domain), spectrum plot (frequency domain) and sonogram (time and frequency domain).
While these don’t have the detail or re-configurability found in packages like Amadeus Pro or
Audacity, they offer some insight into how your synthesised sound is made up, and provide a
useful diagnostic tool for tailoring your plugin to specific timbres or identifying bugs.

If you are unsure about any aspect of the template, or have questions
about how the example code works, feel free to ask the module tutors.

3 Adding More Harmonics
In this exercise, you will add harmonics to the sine wave to create a more complex tone. As
you should have noticed in the visual plots, sine waves only have a single frequency
component. However, we can layer several sine waves to create a harmonic series, which are
not heard as separate, distinct pitches, but instead grouped into one pitch and heard as a new
timbre. This process of adding sound waves together is an example of additive synthesis. The
following sections will walk you through the synthesis of both sawtooth and square waves,
while also teaching you how to create new DSP and code objects from existing ones.

3.1 Creating a SawWave Object [BASIC]

Section 2 highlighted the advantages of grouping code components together in separate
objects, in order to abstract and break down the complexity of the overall synthesiser. While
we could add extra harmonics by using an array of Sine objects in MyNote, a better approach
is to create a new object to represent our new tone, and place all the variables, initialisation
code, and audio processing inside it. Then we can simply use this new object in MyNote, in
place of the existing Sine object, without changing any existing code in SynthNote.cpp.

The example code shown (inset, left) illustrates the
general form of a class declaration, for an imaginary
class, named ClassName, containing a private member
variable, called memberVariable (an integer that can-
not be accessed outside the class), and a public
member function, memberFunction() (a function that
can be called outside the class, but can itself access
the class’ private member variable).

class ClassName
{
public:
 void memberFunction(){
 // code to execute
 }

private:
 int memberVariable;
};

SawWave

The above block diagram shows all the processing functionality that our object will
encapsulate, effectively bundling all the components into a single processing block that takes
a frequency input and provides an audio signal output. In this respect, creating an object is
much like creating a sub-patch in Max.

Create an object to represent a new sawtooth signal generator:

1. In SynthExtra.h, declare a new class called SawWave, with labels for public and
private sections. Do not forget the braces { } or semi-colon (;) at the end of the class!

2. To keep track of the number of harmonics to generate, add the following compiler
macro above the class declaration:

#define MAX_HARMONICS 8

 Now, the compiler will automatically substitute the number 8 whenever it sees
MAX_HARMONICS – so that in the future, if we want to change the number of harmonics,
we only have to change this macro, rather than everywhere we’d used the number ‘8’.

3. Our complex tone will be built by layering multiple sine tones, representing each
harmonic. Add an array of Sine objects in the class’ private section of your object:

Sine harmonic[MAX_HARMONICS];

4. We want our class to be a drop-in replacement for the Sine object, so it must mimic
the same functions, and provide similar functionality. Declare and define the following
functions (which are used in SynthNote.cpp), inside your new class. Some tips are
provided to help you code the bodies of each function, but in each case, you will
generally want to use a for loop to iterate over each of the Sine objects:

void reset()
This function is used to set the phase position to the start of the wave. Since your
wave is simply a combination of sine waves, your version simply needs to call the
corresponding reset() function on each of the Sine objects it contains – i.e.
harmonic[0], harmonic[1], harmonic[2], and so on …

void setFrequency(float frequency)
This function is used to set the frequency of the tone. A sawtooth wave comprises
the fundamental frequency (which corresponds to the perceived pitch) plus all the
remaining frequencies in the corresponding harmonic series (i.e. 1x, 2x, 3x...)
Your version of this function needs to set the frequencies of each of Sine object,
to correspond with the frequencies of the harmonics (as pictured in the diagram).

float tick()

This function generates the audio by calculating the next audio sample. It is called
repeatedly by the synthesiser, returning one floating-point sample value at a time.
Your version of this function will call the corresponding tick() functions of each
Sine object, adding and appropriately scaling each returned value (representing
each harmonic), mixed into a single floating-point value. To model the decreasing
harmonic amplitudes in the sawtooth, scale each harmonic by 1.0 / n, where n is
the number of the harmonic, beginning at 1 for the fundamental.

5. Your sawtooth signal generator is now ready to be used. In the declaration of MyNote
(in SynthNote.h), simply change the type declaration of the signalGenerator object
to use your SawWave class type, rather than the Sine type.

6. Run the plugin and (initially, with a low volume to protect your ears from potential
bugs) audition your saw wave generator. Be sure the oscilloscope (waveform display)
shows a roughly saw-like shape, and that the spectrum and sonogram (frequency plot)
show a regular series of decaying harmonics.

3.2 From Saw to Square [BASIC]

Once you have a saw wave object, converting it to generate a square wave is easy. Since both
are based on arranging multiple frequency components in a harmonic series, you can
re-use most of the code you have already written:

1. In SynthExtra.h, copy and paste the SawWave class code, to create a duplicate below
the existing declaration, and rename the new class SquareWave.

2. The principal difference between saw and square waves is that square waves contain
only odd harmonics. Thus, you can approximate a square wave simply by altering
the tick() function to set only odd harmonics (i.e. skipping the even harmonics).

3. Change your signalGenerator object, in MyNote, to use your SquareWave class.

4. As before, audition the sound made by your new plugin and observe it in the
oscilloscope to check if the wave has a square shape.

5. You may notice the sound is not as bright or harsh as a typical square wave. This is
because we are only generating eight harmonics, and thus the higher frequency
harmonics are not present. However, the sound does resemble that of a well-known
musical instrument. If you recognise the timbre, make a note of the instrument:

6. Now, return to the definition of MAX_HARMONICS (in SynthExtra.h), and change it to
16. Then rebuild and re-run the plugin, to see how the sound and visual look of the
wave has changed. It should now sound brighter and more recognisable.

3.3 From Copying to Subclassing [CORE]

Copying and editing the sawtooth object to create a square wave object is easy and
straightforward, but results in a lot of duplicated code. To avoid this, we can use another
powerful concept of object-oriented programming, called inheritance. This allows us to tell
the compiler that the new object we are creating is mostly based on an existing object, so that
we are only required to write definitions for new parts and/or parts that have changed. The
new object becomes a subclass of the original – also referred to as the child and parent class,
respectively – and we can add functions to replace (or override) the original’s.

To adapt your implementation of SquareWave and inherit code from SawWave:

1. Change the first line of the class to read:
class SquareWave : public SawWave

2. Delete the functions that do not change – reset() and setFrequency(). These will
be inherited from the parent SawWave class.

3. Remove the entire private section, including the array of Sine objects, which are
also inherited from the parent SawWave class.

4. Finally, a small change is required in the parent SawWave object. A parent class’
private variables and functions are inaccessible from outside the class (even for child
classes), so SquareWave’s replacement tick() function will not be able to access the
Sine objects. Instead, we must put these objects in a protected section, enabling
access from child classes such as SquareWave, but not from other unrelated classes.
To do this, change the private: label to a protected: label, in the SawWave class.

Your plugin should now build and run exactly as before. However, notice how much more
concise the code is. Moreover, if you were to later improve (or find a bug in) one of the
shared functions (e.g. reset()), you only need to fix it in one place, as the fixed version will
be inherited by derived classes automatically. As software projects (including synthesisers)
grow in complexity, such techniques help keep the code manageable and easier to maintain.

(Advanced/Optional) Classes should be logically designed to make code as easy to read as
possible. We exploit the similarity of saw and square waves in our two objects, but their
relationship is slightly misrepresented: a square wave is not “a class of” saw wave – rather,
they are both types of additive synthesiser based on the harmonic series. It may thus be more
logical to have a parent class (e.g. called Additive) from which both signal generators are
then derived, and which supplies the common or default functions to its children.

To add further clarity, we can label the functions we are overriding (in the parent), and those
that override them (in the child). Functions we expect to be overridden are called virtual
functions, and it is good practice to label them as such. The following example makes clear
the relationship (and can also help the compiler flag mistakes in your code!) …

 class Additive {
 virtual float process();
 };

class SawWave : public Additive {
 float process() override;
};

4 Aliasing and Band-Limiting [CORE]
Aliasing occurs when frequency components are introduced to a digital audio stream above
the Nyquist frequency (equal to half the sample rate). As frequency partials rise beyond this
limit, they “wrap around” (the frequencies are reflected around the Nyquist frequency) and
start falling in frequency instead of rising. When these hit 0Hz, they wrap around again and
start rising. At a sample rate of 44100Hz, the effect is as follows:

4.1 Aliasing Effects

In the signal generators we have developed, there is nothing preventing the frequency of the
harmonics going beyond the Nyquist limit, and frequency artefacts (aliasing) may be heard,
especially at higher notes:

1. Using either your SawWave or SquareWave classes, set the number of MAX_HARMONICS
to 16 (to make it easy to produce aliasing) and then build and run the plugin.

2. First, play notes by moving up the virtual keyboard with the mouse, listening for the
change in tonal quality. At a certain point, the frequency partials start being reflected
around the Nyquist limit. The frequencies onto which they are reflected are no longer
integer multiples of the fundamental, so will sound more dissonant. The more
harmonics that are reflected, the more dissonant and less musical the tone.

3. Now, switch to the Spectrum plot and again move gradually up the keys of keyboard
using the mouse, watching the peaks of the harmonics. The built-in plot shows the
entire frequency range, from 0Hz up to the Nyquist limit (e.g. 22050Hz).

• As you move beyond E4, you should see more and more upper harmonics
become reflected, falling in frequency instead of rising.

• Later, as you move beyond F#5, the reflected harmonics fall below 0Hz and are
again reflected, beginning to rise again.

• As you approach the higher registers (above C6), the dissonance of the aliasing
noise increasingly overwhelms the pitch of the original musical tone.

4.2 Band-limited Oscillators [CORE]

To avoid aliasing effects, signal generators should avoid generating harmonics above the
Nyquist frequency. Our signal generator objects calculate the frequencies of a note’s
harmonics, and assigns them to individual Sine objects in setFrequency(). Before we add
the output of each Sine object to the overall mix in tick(), we can check a harmonic’s
frequency and act accordingly (e.g. choosing not to add it to the mix, if it’s above the Nyquist
limit):

1. In the tick(), use the getSampleRate() helper function to work out the Nyquist
limit and assign it to a temporary local variable.

2. Update the code that mixes the harmonics together so that only harmonics with
frequencies below the Nyquist limit are included in the mix. Use the Sine object’s
getFrequency() to find out what frequency it’s set to.

Notice how setFrequency() and getFrequency() functions are used to set the
frequency of a Sine object. If you look at the definition in Helpers.h, you’ll see that
the variable used to actually store the frequency (frequency), is “protected” and
inaccessible to the outside. This ensures that Sine retains control over its internal
state – and that all frequency changes are run by the class’ setFrequency() function,
which updates the actual variables used to generate the sound.

3. Build and run the plugin, and check that the sound is no longer aliased. Compare the
quality of the tone to that before, using both your ears and the Spectrum plot.

It should be noted that while the inharmonic frequencies of aliasing generally give rise to
dissonance and unpleasant timbres, inharmonic frequency components (partials) make an
important contribution to the timbre of most acoustic sounds and real-world instruments, and
can significantly increase the range and richness of tone colours possible through synthesis, as
we shall investigate in future practicals.

The STK library also includes band-limited sawtooth and square wave oscillators for you to
use in your synthesisers. While the oscillators developed during this practical are accurate
anti-aliased digital oscillators, the STK versions use a more advanced and efficient technique,
designed to model characteristics of analog synthesisers, including some inharmonic qualities.
To use them, edit MyNote to use either a Saw or Square object, in place of the existing classes.

5 Finally

Make sure that you archive a copy of all the source files edited today, or backup the entire
src folder. Use zip compression to create archives (.zip files) of each practical/exercise.

It is also recommended that you re-read this practical handout before the next session,
to reinforce the concepts introduced, as they will form the basis for future sessions.

