
Audio Process Design & Implementation
Practical 3 - Introducing MyEffect

1 Purpose

This practical will introduce you to the MyEffect code project, and the process of developing
audio plugins. We will explore plugins using the APDI “mini-plugin” development platform,
and produce Audio Unit (AU) or VST plugins that will run in almost any Mac or Windows music
program, such as Logic Pro X and Cubase. Through MyEffect, the low-level, platform-dependent
code has been abstracted, allowing you to focus on the audio and signal processing functionality.
The concepts explored are universal to all plugin architectures, as well as analogue (hardware)
approaches. A working knowledge of basic C++ programming is the only pre-requisite.

2 The MyEffect plugin

A plugin is a piece of compiled code used to extend the functionality of a larger (host) program
(such as Logic, Cubase, Pro Tools, Premiere, Amadeus Pro, etc.).

The main benefits of plugins are:

• Third-parties can add extra features to a program without access to its source code. This also
reduces the onus on developers to include every conceivable feature in the original program.

• The host handles low-level communication with the hardware, providing a basic interface
(for audio and MIDI), so that the plugin developer can focus on audio and music functionality.

• Users need load only the features they need, rather than working in a workspace cluttered
with unused components. They can likewise replace features of the host with alternatives.

• Through a single body of code, programmers can develop audio and music functionality for
multiple host programs and/or operating systems - write once, run anywhere.

The challenges are:

• Plugin functionality must provide a consistent code-level interface to the host, to ensure
compatibility. The plugin specification may impose limits on what is possible (e.g. user
interaction or audio connectivity). Outside realtime audio and MIDI, other user or musical
data stored in the host is usually not accessible to a plugin.

• Debugging can occasionally be more complex than in a self-contained, standalone applica-
tion, as plugin developers don’t have access to the code for the full system (i.e. the host).

• The plugin is at the mercy of the host. While a plugin specification defines what should be
possible, not all hosts implement every feature - nor provide the functionality consistently.

A good way to think of a plugin is as a software equivlent to a hardware audio device. You can
add it or remove it from your system or studio, but it has to use standard interconnects that all the
manufacturers have agreed on, so that the various black boxes can communicate with each other.

1

2.1 Mini-Plugin Architecture

The MyEffect code project uses a JUCE-based Audio Unit (AU) and VST mini-plugin system
specially developed at UWE to expose only the core components of the plugin architecture, to help
students learn, explore, and develop effects processing plugins.

In combination with the provided Effect Plugin container, your code can run in any audio program
that supports AU or VST plugins, including nearly all professional audio packages on Mac or
Windows - Logic, Cubase, Pro Tools, Amadeus, Premiere, etc. A customisable UI is also supported,
through which you, your users, and the host (through automation) can control the effects process,
also providing basic realtime analysis of your plugin’s output (waveform, spectrum, sonogram).

This allows you to ignore platform-specific details, such as OS (Mac or Windows), audio API
(CoreAudio, WASAPI, WDM, DirectX, MME, etc.) or plugin SDK (AU, VST), which are handle for
you by the Effect Plugin, enabling you to focus on digital signal processing (DSP). Beyond this, you
will need little more than a knowledge of C/C++, which we will further develop over the year.

2.2 Audio Processing using Buffers

The central part of any audio plugin is the code used to process audio data, which is usually
contained within a single function inside the plugin. The host calls this regularly, supplying input
and output buffers that the plugin reads from and writes to, respectively.

A buffer is simply an array of floating-point numbers representing the audio signal. The input
and output buffers are stored in the host, but it provides pointers to the array, so that the plugin
can access the data. We process data in buffers, rather than individual samples, to improve
performance - since a lot of the tasks required to prepare and process multiple samples are similar,
we look to do them as few times as possible. Using tricks such as iteration (i.e. a while loop), we
are able to write fast code to process multiple samples in one pass, as illiustrated below.

Host Program

L:

R:

51
2

sa
m

pl
es

51
2

sa
m

pl
es

51
2

sa
m

pl
es

Plugin

process()
function

while
loop

51
2

sa
m

pl
es

51
2

sa
m

pl
es

51
2

sa
m

pl
es

Input

Output

2

The disadvantage of using buffers is that it introduces latency. If we have a buffer of 512 samples,
then the host has to wait until it has captured 512 samples from the audio input, before it can
deliver them to the plugin for processing. Similarly, the host then has to wait until all 512 samples
are processed and returned by the plugin, before it can play them.

This leads to both an input and output latency, proportional to the size of the buffer - e.g. 23ms
for a 512 sample buffer, using a 44,100Hz sample rate ((512+512)/44100 = 0.023s) - though for
improved stability the system might have additional safety buffers, further increasing the latency.
Latency can obviously be reduced by reducing the audio buffer size, but this comes at the cost of
reducing the efficiency of the processing, leading to higher CPU load.

2.3 Getting Started

1. From Blackboard, download the MyEffect project template (under “Learning Materials”).
Copy the MyEffect.zip file to a local folder and double-click it to expand its contents.

Note: Always be sure to copy work to safe, permanent storage - your APDI folder plus an
external drive and/or cloud-based storage (e.g. OneDrive). See Section 2.4.3 for tips.

The resulting folder contains two sub-folders:

• Build - containing the executable binaries (including Effect Plugin, Plugin Host, and your
compiled MyEffect mini-plugin), plus any temporary build files.

• MyEffect - containing all the source code, resource files, and code projects. This folder
contains all your work, and thus the one you need to back up or submit for assignments.

2. In the MyEffect folder, open the appropriate project file MyEffect.xcodeproj (Mac/Xcode)
or MyEffect.vcxproj (Windows/Visual Studio), by double clicking it.

• The project consists of three main code files: EffectPlugin.cpp/h and EffectExtra.h.
• To test our plugin, a dedicated program called “Plugin Host” is provided. The program

should install and run automatically when you build and run your code. It should also
handle configuration and installation of the Effect Plugin and your MyEffect mini-plugin.

3. Build and run the project (R in Xcode; F5 in Visual Studio). After a short delay, you should
see your plugin appear, running in Plugin Host. Click Play to check the audio is working.

4. If your plugin does not appear, try the following troubleshooting steps:

• After compiling, check in the Build folder to make sure the MyEffect.bundle (Mac) or
MyEffect.dll (Windows) files have been produced. This is the mini-plugin that links
with the Effect Plugin.component (AU) or Effect Plugin.dll (VST) plugins.

• Running the project installs / launches the Plugin Host, which in turn automatically
installs and/or runs your plugin. On Windows, everything runs from the Build folder.
On Mac, plugins need to be installed to the system folder, which should happen auto-
matically when you first run your code, but you might see errors (see inset).

• Otherwise check the Discussion Board on Blackboard and/or report any problems (always
including details of your system and any error messages) to the module leader.

Mac only: To check the install in Finder, press Shift- G and enter: ~/Library/Audio/Plug-Ins/Components (note
the ~ tilde). Verify that MyEffect.bundle and Effect Plugin.component are both present. If they are, you might
need to either re-run the project or restart the system to refresh your audio plugin cache. If Effect Plugin.component
is missing, you can try copying it manually from the Build folder. If you have an LLDB error about Plugin Host.app,
try manually copying it from the Build folder to your main Applications folder, then re-run the project from Xcode.
If shown a security warning(s), open your Security & Privacy preferences and click "Allow Anyway" to
unblock Effect Plugin.component. Then, the next time you run it, you’ll be able to click "Open". Note that
because the OS interrupted the program, it will initially crash, but should run flawlessly on future runs.

3

2.4 The process(...) function

In the MyEffect project, the function used to process audio is called process(...). In practicals,
it will be up to you to provide the code for this function, using a standard template, which you
should understand and follow, as explained in this section. This function is called regularly, by
the host, when it is time to process a buffer of audio samples. The default code simply passes data
from the input buffer to the output buffer without changing it. Expand the project tree, click the
EffectPlugin.cpp file and locate the process() function (as pictured above).

void MyEffect::process(const float** inputBuffers , float** outputBuffers , int numSamples)

Through the arguments to the function, the host supplies pointers to two stereo buffers, for input
and output audio. Notice that the arguments are pointers to pointers (**) representing arrays of
arrays - that is, a stereo buffer is an array of two audio buffers, each of which is an array of floats.

• **inputBuffers points to a stereo input buffer, containing read-only audio to be processed.
• **outputBuffers points to a stereo output buffer, to place audio in after processing.
• numSamples indicates how many samples each buffer contains.

Each audio buffer contains 32-bit floating-point sample values representing the changing ampli-
tude of the audio, which has a maximum range of -1.0 to 1.0. Amplitudes beyond +/-1.0 may lead
to unexpected clipping and distortion, and should be avoided.

2.4.1 How it works: line-by-line

The role of the process() function is to go through each input sample and process it to yield
an output sample, which is placed in the output buffer. Samples from each channel have to be
processed separately, but we tend to do their calculations at similar points in the function, using
similar code. A pair of left and right samples is called a sample frame.

At the start of the function, we create four pointers, addressing each buffer of each stereo channel
(0=left, 1=right). For example, inputBuffers[0] points to the left input buffer:

float *pfInBuffer0 = inputBuffers[0], *pfInBuffer1 = inputBuffers[1];
float *pfOutBuffer0 = outputBuffers[0],*pfOutBuffer1 = outputBuffers[1];

4

To iterate over the individual samples of each buffer, we use a while loop. As in the last practical,
the while loop and decrement (--) operator are used to count down the number of iterations.
When numSamples reaches 0, all frames will have been processed and the loop (and function) ends:

while (numSamples --)
{
...

}

Unlike a for loop, an iterator variable is not used to access the array. Instead, we access the data by
dereferencing a moving pointer (using the * operator), in the first two lines of the loop. The diagram
below illustrates how the pointers are simply a signpost to the current position in the array:

pfBuffer

Inside the loop, the current input sample value is copied into a local variable for each channel (fIn0,
fIn1), declared before the loop, before the pointer is moved on (ready for the next read). This local
variable offers us a temporary copy we can modify, without touch the (read-only) input buffer:

fIn0 = *pfInBuffer0++;

We then place code to process sample values in the subsequent lines of code. However, in the
default template, no modification is made. Instead, the input is simply copied to a temporary
output variable...

fOut0 = fIn0;

When you add your own code, you will replace the line(s) above, using fIn0/1 to calculate fOut0/1.
Lastly, in the final lines of the loop, we copy the temporary output variable to the output buffer
(by dereferencing the output pointer), and also increment the pointers to each output buffer (after
copying the values). Note how we are incrementing the addresses in memory, not the values they
are pointing to:

*pfOutBuffer0++ = fOut0;

2.4.2 Performance considerations

It is important to think about where you place your code, to ensure your plugin runs efficiently in
realtime. If your code is inefficient, it can lead to glitches in the audio output. Hosts will give your
plugin a fixed window of time to process and return the samples. If they are not returned in time
(e.g. before the host moves to the next buffer), problems arise - audio overloads and dropouts will
produce glitches and crackle in the output, since the host has no audio (only silence) to output.

Code inside the while loop is executed for each sample in the buffer - at audio rate. For example,
in a system with a 44,100 Hz sample rate, the while loop repeats 44100 times every second. As
such, if you add inefficient or unnecessary code to this section, the time it takes will be magnified
thousands of times.

By contrast, the code outside (e.g. before) the loop is only executed once per buffer - e.g. once every
512 samples, or 512 times slower than sample rate (about 86 Hz). Therefore, calculations that do
not have to be calculated at audio rate, including user input handling and other slower-evolving
processes that control audio processing rather than apply it, should be calculated outside the while
loop - at control rate.

5

2.4.3 Archiving your work

Over the semester, you will make many plugins, and put a lot of effort into coding for the practical
exercises and assignments. It’s extremely important to save your progress, as well as organise the
code for different exercises and projects. Save (and back up) often, for each exercise, as follows:

1. Select the MyEffect subfolder and compress it to a .zip archive:

• Mac: Right click the folder in Finder, then choose Compress X items. A new file
appears, named Archive.zip or MyEffect.zip.

• Windows: Right click the folder in Explorer, then choose Send to → Compressed
(zipped) folder. A new file appears and prompts you to enter a name for it.

• You do not need to include the Build folder, which is much bigger (several MBs) - and
contains programs that can either be replaced from a freshly downloaded project or are
automatically regenerated using Xcode or Visual Studio.

• Generally, the most important files are those containing your source code:

EffectPlugin.cpp, EffectPlugin.h, and EffectExtra.h

You might chose to only archive these files, but be sure not to overlook any important
supplementary files (e.g. custom audio files or background art). These three files are
also the ones you should attach when emailing tutors with questions about your code.

2. Be sure to name the archive to tell you what it contains (e.g. Practical 3 - Ex 3.1.zip), and store
it somewhere sensible (easy to find) and safe (hard to lose). It should only be a few KBs.

3. To retrieve your work later, simply double click the archive to extract the folder, and use it
in place of the MyEffect folder in a newly downloaded code project.

3 Gain, Mixing and Panning [BASIC]

• Only change code inside the process() function, unless otherwise indicated.

• You should never use “Save As...” or rename a file inside the project, or change
the configuration settings. Doing so may cause the project to stop working.

• After each exercise, archive your code, as described in the previous section.

3.1 Coding your first plugin

Your first task is to add an amplitude gain control based on “Param 0” (i.e. the first dial). To do
this, you will use the commented-out line of code, in the process() function, which reads a value
from the user interface (UI):

// float fGain = parameter[0];

The parameter array references the current settings for each control in the UI, using the subscript
in square brackets to identify which. You can both read from and write to these settings, which also
correspond to the plugin’s automation parameters, controllable from the host. Each parameter
(and UI control) is defined in the UI_CONTROLS array, passed to the plugin on startup, which will
be explained in a later practical. By default, you have 10 rotary sliders ([0] to [9]).

6

The = operator assigns the current value of the first parameter / control (a value between 0.0 and
1.0) to fGain, which is declared as a temporary local variable.

1. Work out how to use the fGain variable inside the while loop to change the sample values
being fed to each output buffer, to apply a change in gain. That is, at 1.0 there should be full
amplitude; at 0.0, silence.

You should remember how to do this from lectures (or the printed course notes) - but as a
hint, one of the following mathematical operators should be used: + - * or /

2. Test your code:

(a) Build and run the plugin, and test your code with the built-in test sounds.
(b) Use leftrightEP.aif to ensure that the effect works on both left and right channels

controlled from a single dial. If not, return to your code and try to address the issue.

3.1.1 Testing in Another Host

Congratulations, you have created your first interactive effects plugin! To demonstrate that the
plugin is not restricted to working in Plugin Host, we can test it in another host. On Mac, Effect
Plugin should already be available to other programs, like Logic Pro or Amadeus Pro, and will load
your MyEffect code automatically. On Windows, you will need to copy Effect Plugin.dll and
MyEffect.dll to your vstplugins folder, before opening the VST host.

Load your favourite program, and test the plugin works on a 2-channel stereo track (note: the host
might not load the plugin unless the track is stereo). If the program organises its effects plugins
by manufacturer, look under UWE → Effect Plugin.

3.2 Basic Mixing [BASIC]

In this exercise, we seek to mix the stereo input channels together to produce a mono mix, and
control the mix with separate dials. The plugin will still output in stereo, but the contents of each
channel will be the same: a mix of the two input channels.

1. We need a place to store the mix of both channels. Declare a suitable variable to contain a
single sample value, before the while() loop, and give it a suitable (informative) name.

2. Inside the loop, use it to create a simple mix of the left and right input sample values. Because
we are combining two signals together, they might peak louder. Work out how to halve the
amplitude of the mix, to guard against this.

3. Send the result to both outputs to create a stereo-to-mono effect. Test this by running it in
Plugin Host (from your IDE) to ensure that the previously stereo effect of leftrightEP.aif
is now mono.

4. Now imagine the left and right inputs were two separate mono channels on a mixer, each
with independent gain controls (e.g. faders). Using the following tips, work out how to
change your code to simulate a simple 2-channel mixer:

• Use the original dial to set the level of the left channel, and a second to set the right.
You will have to modify and extend your fGain code to handle each channel and dial.

• Mix the channels in proportion to their levels, sending the mix to both output channels.

Test that it is possible to create a mix of just the left input signal, or just the right input signal,
or a combination of both, and that the result is mono. A good test file is leftrightsynth.aif.
Remember to archive your work before proceeding.

7

3.3 Basic Panning [BASIC]

In this exercise, we will use only the first dial to achieve a panning effect for a mono mix. This is
done by having the dial directly control the gain of the mix in the right channel, and inverting the
gain in the left. If line “L” is the gain value for the left output, and “R” is the gain value for the
right output, then the control mapping is as follows:

control
position

gain
(multiplier)

0.0 0.5 1.0
0.0

0.5

1.0
L R

Remove the individual gain code from the previous section, but keep a simple mono mix fMix of
the two inputs (which will be panned left or right). To achieve the panning effect, use the control
mapping y = 1− x to change the right gain values (x) to those needed for the left (y). Implement
the effect. Test it carefully to ensure that the result is exactly as expected.

4 Beyond the process() function. [CORE]

In this section, we will move beyond the confines of the process() function, investigating some of
the other functions and code associated with the MyEffect plugin, whilst exploring the difference
between audio and control rate processing.

We will revisit the wavetable array from the previous practical (Practical 2, Section 6), and integrate
the code with the plugin to explore how the audio effect can change, depending on where code is
placed. This exercise will also introduce different variable scopes: local and shared variables.

If you have not completed the previous practical’s exercise, go back and do so
before continuing. Be sure to check your solution with a member of staff.

4.1 Shared Variables
We are going to use the wavetable as an oscillator to control the gain of our audio process. However,
if we declare the array locally, in the process() function, it will be cease to exist when the function
exits. We’d thus have to recreate and recalculate it every time the function is called, which isn’t
efficient, but would also lose track of where we were in the wavetable.

Instead, we must place the array not only where we can access it from process(), but also where it
will survive, so that we only have to calculate it once. To achieve this, we will declare the variable
as part of the MyEffect class, so that it is available throughout our plugin object:

1. Start with a clean copy of the MyEffect code project.

2. Declare the wavetable array as a shared variable. To do this, place the line of code that
declares fArray inside the MyEffect class declaration (in the header file, EffectPlugin.h).
There is a comment to highlight where shared variables should go - add the code immediately
below, making sure it appears before MyEffect’s closing braces.

8

3. As before, we must now fill the array with the values of the sine wave. To do this, find the
MyEffect::initialise() function definition, in EffectPlugin.cpp. This function is called
once, when the plugin is first created, and is useful for initialising variables, allocating extra
memory, or otherwise preparing the plugin before audio processing starts.

Identify the code in the last practical that you used to iterate over the array and calculate its
values. Copy and paste the relevant parts into the initialise() function. Do not include
the array declaration; the code will use the one you just declared for the MyEffect class.

4. As we want to control amplitude, the arrays values must be in the range 0.0 to 1.0. Edit the
code to scale (*) and offset (+) the sin values so they map to the range 0.0 to 1.0, instead of
-1.0 to 1.0 (i.e. halve the range, then make it so that instead of starting at -0.5, it begins at 0.0).

4.2 A Wavetable Oscillator
We will use the array values to control the gain applied to the input audio, stepping through the
wavetable to vary the gain over time. To do this, we also need to keep track of our current position
within the array, moving it along as necessary.

1. Like the array itself, the position variable needs to survive beyond the end of the process()
function. Declare another shared variable, a single 32-bit integer called iArrayPos, as before
(i.e. in the MyEffect class declaration, in EffectPlugin.h).

2. In the MyEffect::initialise() function (in EffectPlugin.cpp), initialise the variable to a
default value of 0, indicating the beginning of the array.

3. Now, back in process(), we need to add code to step through the array, and use the values
in the array to control the gain. Add the following code, before the while loop:

iArrayPos++;
if(iArrayPos == 16)

iArrayPos = 0;

float fGain = fArray[iArrayPos];

4. Modify the code in the while loop to use fGain to attenuate the amplitude of both channels.

5. Build and run the plugin to test your code. Use electricguitar.aif to audition the effect.
If successful, it should bear resemblance to a common guitar effect.

Note, however, that the audio will be noisy and glitchy. This is because there are so few steps
in our wavetable that the jumps in amplitude are large enough to produce audible clicks.
One way to address this is to increase the size and resolution of the wavetable. Try to work
out how to do this in the code - you’ll need to make at least four changes.

Similar issues frequently arise whenever control variables have a low resolution (as in MIDI)
and audibly step between values, producing abrupt changes in the sound. This is known as
parameter or zipper noise. We will look at another way to address this in a future practical.

6. Now take the code inserted in Step 3 and move it to the start of the while loop. Audition the
plugin again. The effect should sound very different. Can you work out what is happenning?

Finishing up

Remember to comment and archive your work, to allow you refer back to it later on.

If you get unexpected results, check your code / answers with a member of staff.

9

